EE 508 Lecture 23

Integrator Design

TA-C Integrators
Other Integrator Structures

Integrator Characteristics of Interest

$$I(s) = \frac{I_0}{s}$$

Properties of an ideal integrator:

$$|I(j\omega)| = \frac{I_0}{\omega}$$

Gain decreases with $1/\omega$

$$\angle I(j\omega) = -90^{\circ}$$

Phase is a constant -90°

$$\left| I(jI_0) \right| = 1$$

Unity Gain Frequency = 1

How important is it that an integrator have all 3 of these properties?

Some integrator structures

There are other useful integrator structures (some will be introduced later)

There are many different ways to build an inverting integrator

Review from last time Integrator-Based Filter Design

Any of these different types of integrators can be used to build integrator-based filters

Review from last time

Are new integrators still being invented?

Oct 16 2018

Review from last time

50 9,139,096 One-sided detection and disabling of integrator wind up for speed control in a vehicle

	PAT. NO.	Title
		Increasing the dynamic range of an integrator based mutual-capacitance measurement circuit
		Capacitive fingerprint sensor with integrator
		Inverting amplifier, integrator, sample hold circuit, ad converter, image sensor, and imaging apparatus
		Gated CDS integrator
		Pregame electronic commerce integrator
		Output range for interpolation architectures employing a cascaded integrator-comb (CIC) filter with a multiplier
		Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
		Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
		Low power switched capacitor integrator, analog-to-digital converter and switched capacitor amplifier
		Confirming the identity of integrator applications
		Integrator and A/D converter using the same
		System integrator and method for mapping dynamic COBOL constructs to object instances for the automatic integration to object-oriented computing systems
		Analog/digital converter with charge rebalanced integrator
		Semiconductor device including integrator and successive approximation register analog-to-digital converter and driving method of the same
		Feedback integrator current source, transistor, and resistor coupled to input
		Signal processing apparatus for processing time variant signal with first and second input signals comprising a weighting integrator, a magnitude detector and a gain-adjustable amplifier Shell integrator
		Projector having a rod integrator with an entrance plane smaller than an area light source
Nov 2016		Apparatus for overload recovery of an integrator in a sigma-delta modulator
		Apparatus for overload recovery of an integrator in a sigma-delta modulator Increasing the dynamic range of an integrator based mutual-capacitance measurement circuit
		Integrator. AD converter, and radiation detection device
		Integrator, AD converter, and radiation detection device Integrator, delta-sigma modulator, and communications device
		Multi-mode discrete-time delta-sigma modulator power optimization using split-integrator scheme
		Cascaded integrator-comb filter as a non-integer sample rate converter
		Electronic integrator for Rogowski coil sensors
		Shell integrator
		Sampling network and clocking scheme for a switched-capacitor integrator
		Confirming the identity of integrator applications
		■ Integrator and touch sensing system using the same
		System integrator and method for mapping dynamic COBOL constructs to object instances for the automatic integration to object-oriented computing systems
		■ Double integrator pulse wave shaper apparatus, system and method
		Analog integrator system and method
		■ Dynamic current source for amplifier integrator stages
		Low power and compact area digital integrator for a digital phase detector
		■ Integrator for class D audio amplifier
	36 9,454,069	Illumination system having first and second lens arrays including plano-convex lenses wherein some lenses in the second array include a first and a second lens element, projection-type display apparatus, and optical integrator
	37 9,405,800	Apparatuses, methods and systems for a universal payment integrator
	38 9,389,625	■ DC-DC converter controller apparatus with dual-counter digital integrator
	39 9,383,395	Charge balancing converter using a passive integrator circuit
	40 9,379,732	■ Delta-sigma modulator with reduced integrator requirements
	41 9,362,890	Compensation filter for cascaded-integrator-comb decimator
	42 <u>9,354,953</u>	System integrator and system integration method with reliability optimized integrated circuit chip selection
	43 <u>9,314,389</u>	Therapeutic integrator apparatus
	44 <u>9,310,924</u>	■ Increasing the dynamic range of an integrator based mutual-capacitance measurement circuit
	45 <u>9,268,441</u>	Active integrator for a capacitive sense array.
	46 <u>9,225,351</u>	■ Current amplifier circuit, integrator, and ad converter
	47 <u>9,218,514</u>	■ Apparatuses and method of switched-capacitor integrator
	48 9,171,189	Systems and methods for preventing saturation of analog integrator output
	49 9,152,387	System integrator and method for mapping dynamic COBOL constructs to object instances for the automatic integration to object-oriented computing systems
		T One sided detection and disabling of integrator wind up for speed control in a validate

Example – Active RC Feedback Tow Thomas Biquad

$$V_{\text{OUT}} = \frac{1}{\text{sR}_{2}\text{C}_{2}} V_{\text{O1}}$$

$$V_{\text{IN}}G_{0} + V_{\text{O1}} (\text{sC}_{1} + G_{\text{Q}}) + G_{1}V_{\text{OUT}} = 0$$

$$\frac{V_{OUT}}{V_{IN}} = -\frac{\frac{1}{C_1 R_0 R_2 C_2}}{s^2 + s \frac{1}{R_Q C_1} + \frac{1}{C_1 R_1 R_2 C_2}}$$

If
$$R_1=R_2=R$$
 and $C_1=C_2=C$
$$Q = \frac{R_0}{R}$$

Example - OTA-C Tow Thomas Biquad

$$V_{OUT} sC_{2} = g_{m2} V_{1}$$

$$V_{1} sC_{1} = -g_{m1} V_{OUT} + g_{m3} V_{IN} - g_{m4} V_{1}$$

$$\frac{V_{OUT}}{V_{IN}} = \frac{g_{m3}g_{m2}}{\left(s^2C_1C_2 + sg_{m4}C_2 + g_{m1}g_{m2}\right)}$$

Assume $g_{m1} = g_{m2} = g_m$, $C_1 = C_2 = C$

$$\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{\left(\frac{g_{\text{m3}}}{g_{\text{m}}}\right) \frac{g_{\text{m}}^{2}}{C^{2}}}{\left(s^{2} + s \left(\frac{g_{\text{m4}}}{g_{\text{m}}}\right) \frac{g_{\text{m}}}{C} + \frac{g_{\text{m}}^{2}}{C^{2}}\right)}$$

express as

$$\frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{\left(\frac{g_{\text{m3}}}{g_{\text{m}}}\right)\omega_0^2}{\left(s^2 + s\frac{\omega_0}{Q} + \omega_0^2\right)}$$

$$\omega_0 = \frac{g_m}{C}$$
 $Q = \frac{g_m}{g_{m4}}$

Basic Integrator Functionality

$$X_{IN1} \xrightarrow{\vdots} X_{OUT} X_{OUT} = \sum_{k=1}^{n} \frac{\pm I_{Ok}}{s}$$

Summing (Multiple-Input) Inverting/Noninverting

$$X_{IN1} \xrightarrow{\vdots} I_{Ok} X_{OUT} = \sum_{k=1}^{n} \frac{\pm I_{Ok}}{s + \alpha_k}$$

$$X_{INn} \xrightarrow{\vdots} X_{OUT} = \sum_{k=1}^{n} \frac{\pm I_{Ok}}{s + \alpha_k}$$

Summing (Multiple-Input) Lossy Inverting/Noninverting

$$X_{IN}^{+} \xrightarrow{+} \underbrace{I_{0}}_{S} \xrightarrow{+} X_{OUT}^{-}$$

$$X_{IN}^{-} \xrightarrow{+} X_{OUT}^{-} = \underbrace{I_{0}}_{S} \left(X_{IN}^{+} - X_{IN}^{+} \right)$$
Balanced Differential

$$X_{INdiff} = \frac{I_0}{s} + \frac{I_0}{s} + \frac{I_0}{s} \times I_{INdiff}$$

Fully Differential

Basic Integrator Functionality

- An inverting/noninverting integrator pair define a family of integrators
- All integrator functional types can usually be obtained from the inverting/noninverting integrator pair
- Suffices to focus primarily on the design of the inverting/noninverting integrator pair since properties of class primarily determined by properties of integrator pair

Inverting Integrator of Family

Noninverting Integrator

Summing Inverting Integrator

Lossy Summing Inverting Integrator

Inverting Integrator of Family

Lossy Summing Inverting Integrator

Lossy Inverting Integrator

Balanced Differential Inverting Integrator

Fully Differential Inverting Integrator

Integrator Types

$$V_{OUT} = \frac{I_0}{s} V_{IN}$$

$$I_{OUT} = \frac{I_0}{s}I_{IN}$$

$$I_{IN}$$
 I_0 V_{OUT}

Transresistance Mode

$$V_{OUT} = \frac{I_0}{s}I_{IN}$$

$$V_{IN}$$
 I_0 I_{OUT}

$$I_{OUT} = \frac{I_0}{s} V_{IN}$$

Transconductance Mode

Voltage Mode Integrators

- Active RC (Feedback-based) MOSFET-C (Feedback-based) OTA-C TA-C Sometimes termed "current mode"
 - Other Continuous-time Structures
 - Switched CapacitorSwitched Resistor

Discrete Time

Active RC Voltage Mode Integrator

$$V_{IN}$$
 R
 V_{OUT}
 V_{OUT}
 V_{OUT}

- Limited to low frequencies because of Op Amp limitations
- No good resistors for monolithic implementations
 Area for passive resistors is too large at low frequencies
 Some recent work by Haibo Fei shows promise for some audio frequency applications
- Capacitor area too large at low frequencies for monolithic implementatins
- Active devices are highly temperature dependent, proc. dependent, and nonlinear
- No practical tuning or trimming scheme for integrated applications with passive resistors

Voltage Mode Integrators

```
    Active RC (Feedback-based)

MOSFET-C (Feedback-based)
 OTA-C

    TA-C

                  Sometimes termed "current mode"
```

- Other Continuous-time Structures
- Switched CapacitorSwitched Resistor

Discrete Time

- Limited to low frequencies because of Op Amp limitations
- Area for R_{MOS} is manageable!
- Active devices are highly temperature dependent, process dependent
- Potential for tuning with V_C
- Highly Nonlinear (can be partially compensated with cross-coupled input

A Solution without a Problem

- Improved Linearity
- Some challenges for implementing V_C

Voltage Mode Integrators

- Active RC (Feedback-based) MOSFET-C (Feedback-based) OTA-CTA-C Sometimes termed "current mode"
- Other Continuous-time Structures
- Switched CapacitorSwitched Resistor

Discrete Time

$$V_{OUT} = -\frac{g_m}{sC}V_{IN}$$

$$V_{OUT} = \frac{g_m}{sC}V_{IN}$$

Noninverting

Inverting

- Requires only two components
- Inverting and Noninverting structures of same complexity
- Good high-frequency performance
- Small area
- Linearity is limited (no feedback in integrator)
- Susceptible to process and temperature variations
- Tuning control can be readily added

Widely used in high frequency applications

$$V_{OUT} = \frac{g_m}{sC} V_{IN}$$

$$g_m = f(I_{ABC})$$

Programmable Integrator

But R_F is typically too large for integrated applications

Lossy Integrator

OTA is generally much smaller than a resistor

$$\frac{V_{OUT}(s)}{V_{IN}(s)} = \frac{g_m/g_{mA}}{1+s(C/g_{mA})}$$

Lossy Integrator

- Practical implementation
- Both OTAs can be readily programmable

Summing Integrator

- Inverting and noninverting functions can be combined in single summer
- All transconductance gains can be programmable

OTA Architecture

M₁ and M₂ matched

Mid-complexity OTA

- M₂ and M₄ matched
- Define M to be the gain of the current mirror formed with M₂ and M₄
- g_m programmable with V_{BIAS}

$$g_{m} = \frac{g_{m1}}{2} (1 + M)$$
 Often M=1
$$g_{m} = g_{m1}$$

Other OTAs exist, considerable effort expended over past two decades on OTA design

Voltage Mode Integrators

- Active RC (Feedback-based) MOSFET-C (Feedback-based) OTA-C Sometimes termed "current mode"
- Other Continuous-time Structures
- Switched CapacitorSwitched Resistor

Discrete Time

Inverting Integrator

Noninverting Integrator

- Can operate at very high frequencies
- Low device count circuit
- Simplicity is important for operating at very high frequencies
- I₀ is process and temperature dependent
- Linearity is limited

Some other perspectives

$$V_{OUT} = \left(\frac{-g_m}{sC}\right) V_{IN}$$

n-channel input

p-channel input

Inverting Integrators

Noninverting Integrator

Can be viewed either as n-channel input with current mirror or as low-gain inverter driving a p-channel input inverting integrator

Inverting Integrator

Alternate noninverting Integrator

Summing Inverting Integrator

Voltage Mode Integrators

- Active RC (Feedback-based) MOSFET-C (Feedback-based) OTA-C • TA-C Sometimes termed "current mode"
- Other Continuous-time Structures
- Switched CapacitorSwitched Resistor

Discrete Time

Another Voltage Mode Integrator

- Infinite input impedance (in contrast to basic Active RC Integrator)
- Both R and C have one terminal grounded
- Requires integrated process
- Accuracy limited by process and temperature
- Size limitations same as basic Active RC Integrator
- Limited to lower frequencies because of Op Amp
- Good linearity

Another Voltage Mode Integrator

Inverting Integrator

$$V_{OUT} = \left(\frac{-1}{sR_{FET}C}\right)V_{IN}$$

Noninverting Integrator

$$V_{OUT} = \left(\frac{1}{sR_{FET}C}\right)V_{IN}$$

- M₁ in triode region
- Reduces Area Concerns but Loss of Linearity
- I_0 is programmable with V_{RR}
- Accurate control of I_B critical

Inverting Integrator

$$V_{OUT} = \left(\frac{-g_{mT}}{sC}\right) V_{IN}$$

Noninverting Integrator

$$V_{OUT} = \left(\frac{g_{mT}}{sC}\right) V_{IN}$$

 g_{MT} is triode region transconductance of M_1

- M₁ operating in triode region
- R_{FET} programmable with V_{RR}
- Very good linearity properties
- Input impedance still infinite

Linearity Properties:

Assuming square-law triode model

$$I_{D1} = \frac{\mu C_{OX}W}{L} \left(V_{GS} - V_T - \frac{V_{RR}}{2} \right) V_{RR}$$

$$I_{D1} = \left[\frac{\mu C_{OX}W}{L} V_{RR} \right] V_{IN} + \left[\frac{\mu C_{OX}W}{L} \left(V_T + \frac{V_{RR}}{2} \right) V_{RR} \right]$$

Note linear dependence on V_{IN}

$$g_{mT} = \left[\frac{L}{\mu C_{OX} W V_{RR}} \right]$$

- $V_{OUT} = \left(\frac{-1}{sR_{FET}C}\right)V_{IN}$
 - Multiple inputs require single additional transistor
 - Accurate ratioing of gains practical
 - Can also sum currents on C

Inverting Integrator

$$V_{OUT} = \left(\frac{-1}{sR_{FET}C}\right)V_{IN}$$

Inverting Lossy Integrator

Another Voltage Mode Integrator

Inverting Integrator

$$V_{OUT} = \left(\frac{-1}{sRC}\right)V_{IN}$$

Noninverting Integrator

$$V_{OUT} = \left(\frac{1}{sRC}\right) V_{IN}$$

Stay Safe and Stay Healthy!

End of Lecture 23